Requirements for calibration in noninvasive glucose monitoring by Raman spectroscopy.
نویسندگان
چکیده
BACKGROUND In the development of noninvasive glucose monitoring technology, it is highly desirable to derive a calibration that relies on neither person-dependent calibration information nor supplementary calibration points furnished by an existing invasive measurement technique (universal calibration). METHOD By appropriate experimental design and associated analytical methods, we establish the sufficiency of multiple factors required to permit such a calibration. Factors considered are the discrimination of the measurement technique, stabilization of the experimental apparatus, physics-physiology-based measurement techniques for normalization, the sufficiency of the size of the data set, and appropriate exit criteria to establish the predictive value of the algorithm. RESULTS For noninvasive glucose measurements, using Raman spectroscopy, the sufficiency of the scale of data was demonstrated by adding new data into an existing calibration algorithm and requiring that (a) the prediction error should be preserved or improved without significant re-optimization, (b) the complexity of the model for optimum estimation not rise with the addition of subjects, and (c) the estimation for persons whose data were removed entirely from the training set should be no worse than the estimates on the remainder of the population. Using these criteria, we established guidelines empirically for the number of subjects (30) and skin sites (387) for a preliminary universal calibration. We obtained a median absolute relative difference for our entire data set of 30 mg/dl, with 92% of the data in the Clarke A and B ranges. CONCLUSIONS Because Raman spectroscopy has high discrimination for glucose, a data set of practical dimensions appears to be sufficient for universal calibration. Improvements based on reducing the variance of blood perfusion are expected to reduce the prediction errors substantially, and the inclusion of supplementary calibration points for the wearable device under development will be permissible and beneficial.
منابع مشابه
Noninvasive, On-Line Monitoring of the Biotransformation by Yeast of Glucose to Ethanol Using Dispersive Raman Spectroscopy and Chemometrics
We describe the ® rst application of dispersive Raman spectroscopy using a diode laser exciting at 780 nm and a charge-coupled device (CCD) detector to the noninvasive, on-line determination of the biotransformation by yeast of glucose to ethanol. Software was developed which automatically removed the effects of cosmic rays and other noise, normalized the spectra to an invariant peak, then remo...
متن کاملRaman spectroscopy for noninvasive glucose measurements.
We report the first successful study of the use of Raman spectroscopy for quantitative, noninvasive ("transcutaneous") measurement of blood analytes, using glucose as an example. As an initial evaluation of the ability of Raman spectroscopy to measure glucose transcutaneously, we studied 17 healthy human subjects whose blood glucose levels were elevated over a period of 2-3 h using a standard g...
متن کاملAccurate spectroscopic calibration for noninvasive glucose monitoring by modeling the physiological glucose dynamics.
The physiological lag between blood and interstitial fluid (ISF) glucose is a major challenge for noninvasive glucose concentration measurements. This is a particular problem for spectroscopic techniques, which predominantly probe ISF glucose, creating inconsistencies in calibration, where blood glucose measurements are used as a reference. To overcome this problem, we present a dynamic concent...
متن کاملConstrained regularization for noninvasive glucose sensing using Raman spectroscopy
Multivariate calibration is an important tool for spectroscopic measurement of analyte concentrations. We present a detailed study of a hybrid multivariate calibration technique, constrained regularization (CR), and demonstrate its utility in noninvasive glucose sensing using Raman spectroscopy. Similar to partial least squares (PLS) and principal component regression (PCR), CR builds an implic...
متن کاملIn vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days.
This paper presents the latest progress on quantitative, in vivo, transcutaneous glucose sensing using surface enhanced spatially offset Raman spectroscopy (SESORS). Silver film over nanosphere (AgFON) surfaces were functionalized with a mixed self-assembled monolayer (SAM) and implanted subcutaneously in Sprague-Dawley rats. The glucose concentration was monitored in the interstitial fluid of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of diabetes science and technology
دوره 3 2 شماره
صفحات -
تاریخ انتشار 2009